3.112 \(\int \cos (c+d x) (a+a \sec (c+d x))^{5/2} \, dx\)

Optimal. Leaf size=94 \[ -\frac{a^3 \sin (c+d x)}{d \sqrt{a \sec (c+d x)+a}}+\frac{2 a^2 \sin (c+d x) \sqrt{a \sec (c+d x)+a}}{d}+\frac{5 a^{5/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{d} \]

[Out]

(5*a^(5/2)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d - (a^3*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c
 + d*x]]) + (2*a^2*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 0.157041, antiderivative size = 94, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {3814, 4015, 3774, 203} \[ -\frac{a^3 \sin (c+d x)}{d \sqrt{a \sec (c+d x)+a}}+\frac{2 a^2 \sin (c+d x) \sqrt{a \sec (c+d x)+a}}{d}+\frac{5 a^{5/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(5*a^(5/2)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d - (a^3*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c
 + d*x]]) + (2*a^2*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/d

Rule 3814

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(b^2*
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n)/(f*(m + n - 1)), x] + Dist[b/(m + n - 1), Int[(a
 + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n*(b*(m + 2*n - 1) + a*(3*m + 2*n - 4)*Csc[e + f*x]), x], x] /; Fr
eeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] && NeQ[m + n - 1, 0] && IntegerQ[2*m]

Rule 4015

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[(A*b^2*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(a*f*n*Sqrt[a + b*Csc[e + f*x]]), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \cos (c+d x) (a+a \sec (c+d x))^{5/2} \, dx &=\frac{2 a^2 \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{d}+(2 a) \int \cos (c+d x) \sqrt{a+a \sec (c+d x)} \left (-\frac{a}{2}+\frac{3}{2} a \sec (c+d x)\right ) \, dx\\ &=-\frac{a^3 \sin (c+d x)}{d \sqrt{a+a \sec (c+d x)}}+\frac{2 a^2 \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{d}+\frac{1}{2} \left (5 a^2\right ) \int \sqrt{a+a \sec (c+d x)} \, dx\\ &=-\frac{a^3 \sin (c+d x)}{d \sqrt{a+a \sec (c+d x)}}+\frac{2 a^2 \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{d}-\frac{\left (5 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}\\ &=\frac{5 a^{5/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}-\frac{a^3 \sin (c+d x)}{d \sqrt{a+a \sec (c+d x)}}+\frac{2 a^2 \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{d}\\ \end{align*}

Mathematica [C]  time = 4.74327, size = 189, normalized size = 2.01 \[ \frac{2 \cos ^{\frac{5}{2}}(c+d x) \tan \left (\frac{1}{2} (c+d x)\right ) (a (\sec (c+d x)+1))^{5/2} \left (12 \sin ^2\left (\frac{1}{2} (c+d x)\right ) \text{HypergeometricPFQ}\left (\left \{\frac{3}{2},2,\frac{5}{2}\right \},\left \{1,\frac{9}{2}\right \},2 \sin ^2\left (\frac{1}{2} (c+d x)\right )\right )+\frac{1}{8} \sec ^4\left (\frac{1}{2} (c+d x)\right ) \left (24 \sin ^2(c+d x) (\cos (c+d x)+3) \text{Hypergeometric2F1}\left (\frac{3}{2},\frac{5}{2},\frac{9}{2},2 \sin ^2\left (\frac{1}{2} (c+d x)\right )\right )+7 (28 \cos (c+d x)+3 \cos (2 (c+d x))+89) \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{3}{2},\frac{7}{2},2 \sin ^2\left (\frac{1}{2} (c+d x)\right )\right )\right )\right )}{105 d} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[c + d*x]*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(2*Cos[c + d*x]^(5/2)*(a*(1 + Sec[c + d*x]))^(5/2)*(12*HypergeometricPFQ[{3/2, 2, 5/2}, {1, 9/2}, 2*Sin[(c + d
*x)/2]^2]*Sin[(c + d*x)/2]^2 + (Sec[(c + d*x)/2]^4*(7*(89 + 28*Cos[c + d*x] + 3*Cos[2*(c + d*x)])*Hypergeometr
ic2F1[1/2, 3/2, 7/2, 2*Sin[(c + d*x)/2]^2] + 24*(3 + Cos[c + d*x])*Hypergeometric2F1[3/2, 5/2, 9/2, 2*Sin[(c +
 d*x)/2]^2]*Sin[c + d*x]^2))/8)*Tan[(c + d*x)/2])/(105*d)

________________________________________________________________________________________

Maple [A]  time = 0.183, size = 128, normalized size = 1.4 \begin{align*} -{\frac{{a}^{2}}{2\,d\sin \left ( dx+c \right ) } \left ( 5\,\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sin \left ( dx+c \right ) +2\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}+2\,\cos \left ( dx+c \right ) -4 \right ) \sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(a+a*sec(d*x+c))^(5/2),x)

[Out]

-1/2/d*a^2*(5*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*2^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^
(1/2)*sin(d*x+c)/cos(d*x+c))*sin(d*x+c)+2*cos(d*x+c)^2+2*cos(d*x+c)-4)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/sin
(d*x+c)

________________________________________________________________________________________

Maxima [B]  time = 2.44234, size = 1867, normalized size = 19.86 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

1/4*(18*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(3/4)*a^(5/2)*sin(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/
4)*((4*a^2*sin(3*d*x + 3*c) + 5*a^2*sin(2*d*x + 2*c) + 4*a^2*sin(d*x + c))*cos(3/2*arctan2(sin(2*d*x + 2*c), c
os(2*d*x + 2*c) + 1)) + (a^2*cos(2*d*x + 2*c)^2*sin(d*x + c) + a^2*sin(2*d*x + 2*c)^2*sin(d*x + c) + 2*a^2*cos
(2*d*x + 2*c)*sin(d*x + c) + a^2*sin(d*x + c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - (4*a
^2*cos(3*d*x + 3*c) + 5*a^2*cos(2*d*x + 2*c) + 4*a^2*cos(d*x + c) + 5*a^2)*sin(3/2*arctan2(sin(2*d*x + 2*c), c
os(2*d*x + 2*c) + 1)) - ((a^2*cos(d*x + c) - a^2)*cos(2*d*x + 2*c)^2 + a^2*cos(d*x + c) + (a^2*cos(d*x + c) -
a^2)*sin(2*d*x + 2*c)^2 - a^2 + 2*(a^2*cos(d*x + c) - a^2)*cos(2*d*x + 2*c))*sin(1/2*arctan2(sin(2*d*x + 2*c),
 cos(2*d*x + 2*c) + 1)))*sqrt(a) + 5*((a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x + 2*c
) + a^2)*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
 2*c) + 1))) + 1) - (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x + 2*c) + a^2)*arctan2(-
(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), co
s(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (c
os(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x
 + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1)
- (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x + 2*c) + a^2)*arctan2((cos(2*d*x + 2*c)^2
 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))
, (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), c
os(2*d*x + 2*c) + 1)) + 1) + (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x + 2*c) + a^2)*
arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2
*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*
arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*sqrt(a))/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*
cos(2*d*x + 2*c) + 1)*d)

________________________________________________________________________________________

Fricas [A]  time = 2.08373, size = 706, normalized size = 7.51 \begin{align*} \left [\frac{5 \,{\left (a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt{-a} \log \left (\frac{2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \,{\left (a^{2} \cos \left (d x + c\right ) + 2 \, a^{2}\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{2 \,{\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac{5 \,{\left (a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt{a} \arctan \left (\frac{\sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right ) -{\left (a^{2} \cos \left (d x + c\right ) + 2 \, a^{2}\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{d \cos \left (d x + c\right ) + d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/2*(5*(a^2*cos(d*x + c) + a^2)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d
*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(a^2*cos(d*x + c) + 2*a^2)*sq
rt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d), -(5*(a^2*cos(d*x + c) + a^2)*sqrt(a)
*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - (a^2*cos(d*x + c) + 2*a
^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 7.19396, size = 493, normalized size = 5.24 \begin{align*} -\frac{\frac{4 \, \sqrt{2} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} a^{3} \mathrm{sgn}\left (\cos \left (d x + c\right )\right ) \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a} + 5 \, \sqrt{-a} a^{2} \log \left ({\left |{\left (\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} - a{\left (2 \, \sqrt{2} + 3\right )} \right |}\right ) \mathrm{sgn}\left (\cos \left (d x + c\right )\right ) - 5 \, \sqrt{-a} a^{2} \log \left ({\left |{\left (\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} + a{\left (2 \, \sqrt{2} - 3\right )} \right |}\right ) \mathrm{sgn}\left (\cos \left (d x + c\right )\right ) + \frac{4 \, \sqrt{2}{\left (3 \,{\left (\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} \sqrt{-a} a^{3} \mathrm{sgn}\left (\cos \left (d x + c\right )\right ) - \sqrt{-a} a^{4} \mathrm{sgn}\left (\cos \left (d x + c\right )\right )\right )}}{{\left (\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \,{\left (\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

-1/2*(4*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*a^3*sgn(cos(d*x + c))*tan(1/2*d*x + 1/2*c)/(a*tan(1/2*d*x
+ 1/2*c)^2 - a) + 5*sqrt(-a)*a^2*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))
^2 - a*(2*sqrt(2) + 3)))*sgn(cos(d*x + c)) - 5*sqrt(-a)*a^2*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*t
an(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3)))*sgn(cos(d*x + c)) + 4*sqrt(2)*(3*(sqrt(-a)*tan(1/2*d*x + 1
/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*sqrt(-a)*a^3*sgn(cos(d*x + c)) - sqrt(-a)*a^4*sgn(cos(d*x + c))
)/((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 1/2*c)
- sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2))/d